Embedded Systems

Performance Modeling of the NVIDIA Deep-Learning Accelerator (NVDLA) using Performance Representatives

Bach­e­lor’s The­sis / Mas­ter’s The­sis / Stu­dent Re­search Pro­ject

Ab­stract

This stu­dent pro­ject’s goal is to per­form bench­marks on the Nvidia NVDLA Ma­chine Learn­ing Ac­cel­er­a­tor and use those mea­sure­ments to cre­ate a sta­tis­ti­cal per­for­mance es­ti­ma­tor using the Per­for­mance Rep­re­sen­ta­tives (PR) ap­proach. This model should then be com­pared to ex­ist­ing an­a­lyt­i­cal mod­els, like AMAIX, and other per­for­mance es­ti­ma­tion ap­proaches, like ACADL/AIDG.

NVDLA Accelerator

Ref­er­ences

Re­quire­ments

  • Python
  • Linux
  • Suc­cess­fully at­teded the lec­ture “Grund­la­gen der Rech­ner­ar­chitek­tur” and/or “Par­al­lele Rech­ner­ar­chitek­turen” and/or “Mod­el­lierung und Analyse Einge­bet­teter Sys­teme” (op­tional)

Con­tact

Jung, Alexan­der

Lübeck, Kon­stan­tin

Bring­mann, Oliver